Diagonally Implicit Symplectic Runge-Kutta Methods with High Algebraic and Dispersion Order

نویسندگان

  • Y. H. Cong
  • C. X. Jiang
چکیده

The numerical integration of Hamiltonian systems with oscillating solutions is considered in this paper. A diagonally implicit symplectic nine-stages Runge-Kutta method with algebraic order 6 and dispersion order 8 is presented. Numerical experiments with some Hamiltonian oscillatory problems are presented to show the proposed method is as competitive as the existing same type Runge-Kutta methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagonally Implicit Symplectic Runge-Kutta Methods with Special Properties

The numerical integration of Hamiltonian systems is considered in this paper. Diagonally implicit Symplectic Runge-Kutta methods with special properties are presented. The methods developed have six and seven stages algebraic order up to 5th and dispersion order up to 8th.

متن کامل

Embedded Diagonally Implicit Runge - Kutta Algorithms on Parallel Computers

This paper investigates diagonally implicit Runge-Kutta methods in which the implicit relations can be solved in parallel and are singly diagonalimplicit on each processor. The algorithms are based on diagonally implicit iteration of fully implicit Runge-Kutta methods of high order. The iteration scheme is chosen in such a way that the resulting algorithm is ^(a)-stable or Z,(a)-stable with a e...

متن کامل

Efficient Runge-Kutta integrators for index-2 differential algebraic equations

In seeking suitable Runge-Kutta methods for differential algebraic equations, we consider singly-implicit methods to which are appended diagonally-implicit stages. Methods of this type are either similar to those of Butcher and Cash or else allow for the importation of a final derivative from a previous step. For these two classes, with up to three additional diagonallyimplicit stages, we deriv...

متن کامل

High-Order Implicit Time Integration for Unsteady Compressible Fluid Flow Simulation

This paper presents an overview of high-order implicit time integration methods and their associated properties with a specific focus on their application to computational fluid dynamics. A framework is constructed for the development and optimization of general implicit time integration methods, specifically including linear multistep, Runge-Kutta, and multistep Runge-Kutta methods. The analys...

متن کامل

A New Diagonally Implicit Runge-Kutta-Nyström Method for Periodic IVPs

A new diagonally implicit Runge-Kutta-Nyström (RKN) method is developed for the integration of initial-value problems for second-order ordinary differential equations possessing oscillatory solutions. Presented is a method which is three-stage fourth-order with dispersive order six and 'small' principal local truncation error terms and dissipation constant. The analysis of phase-lag, dissipatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014